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Figure 1: Teaser of DA2. Powered by large-scale training data from our panoramic data curation en-
gine, and the distortion-aware SphereViT, DA2 predicts dense distance from a single 360◦ panorama,
with remarkable geometric fidelity. The reconstructed 3D structures exhibit sharp geometric details
and robust performance across diverse scenes, highlighting DA2’s strong zero-shot generalization.

ABSTRACT

Panorama has a full FoV (360◦×180◦), offering a more complete visual descrip-
tion than perspective images. Thanks to this characteristic, panoramic depth esti-
mation is gaining increasing traction in 3D vision. However, due to the scarcity
of panoramic data, previous methods are often restricted to in-domain settings,
leading to poor zero-shot generalization. Furthermore, due to the spherical distor-
tions inherent in panoramas, many approaches rely on perspective splitting (e.g.,
cubemaps), which leads to suboptimal efficiency. To address these challenges, we
propose DA2: Depth Anything in Any Direction, an accurate, zero-shot generaliz-
able, and fully end-to-end panoramic depth estimator. Specifically, for scaling up
panoramic data, we introduce a data curation engine for generating high-quality
panoramic depth data from perspective, and create ∼543K panoramic RGB-depth
pairs, bringing the total to ∼607K. To further mitigate the spherical distortions,
we present SphereViT, which explicitly leverages spherical coordinates to enforce
the spherical geometric consistency in panoramic image features, yielding im-
proved performance. A comprehensive benchmark on multiple datasets clearly
demonstrates DA2’s SoTA performance, with an average 38% improvement on

§Work primarily done during an internship at Tencent Hunyuan. ‡Corresponding author.
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AbsRel over the strongest zero-shot baseline. Surprisingly, DA2 even outper-
forms prior in-domain methods, highlighting its superior zero-shot generalization.
Moreover, as an end-to-end solution, DA2 exhibits much higher efficiency over
fusion-based approaches. Both the code and the curated panoramic data will be
released. Project page: depth-any-in-any-dir.github.io.

1 INTRODUCTION

Unlike the commonly used perspective images, panorama offers an immersive 360◦×180◦ view,
capturing visual content from any direction. This wide FoV makes panorama an essential visual rep-
resentation in computer vision, empowering a variety of exciting applications, such as AR/VR (Chen
et al., 2023) and immersive visual generation (Yang et al., 2025a; Kalischek et al., 2025). However,
immersive visual (2D) experiences alone are not enough. To push the new frontier of panoramic
application scenarios, high-quality depth (3D) information from panoramas is crucially needed for
3D reconstruction and more advanced features such as 3D scene generation (Skywork AI, 2025;
Li et al., 2025b; Lu et al., 2025), physical simulation (Shah et al., 2025), etc. Inspired by this, we
focuses on estimating scale-invariant1 distance2 from each panorama pixel to the sphere center (i.e.,
the 360◦ camera) in an end-to-end manner, with high-fidelity and strong zero-shot generalization.

Panoramic depth estimation is particularly valuable for applications requiring comprehensive spatial
awareness. However, capturing or rendering panoramas is much more challenging than perspective
images, panoramic depth data is much more limited in both quantity and diversity. Consequently,
early methods were largely trained and tested in in-domain settings, with highly limited zero-shot
generalization. Given the wealth of high-quality perspective depth data, is it possible to transform
them into panoramic? Motivated by this, we propose a data curation engine, transforming perspec-
tive samples into high-quality panoramic data. Concretely, given a perspective RGB image with
known horizontal and vertical FoVs, we first apply Perspective-to-Equirectangular (P2E) projec-
tion to map the image onto the spherical space. However, due to the limited FoV of perspective
images (with a typical horizontal range of 70◦−90◦), only a small portion of the spherical space
can be covered (as highlighted in Fig. 3’s left sphere). Thus, such a P2E projected image can be
viewed as an “incomplete” panorama. Then, panoramic out-painting will be performed to generate
a “complete” panorama to match the input of our model, using an image-to-panorama out-painter:
FLUX-I2P (Black Forest Labs, 2024; Tencent, 2025). For the associated GT depth, we apply only
the P2E projection without out-painting, due to concerns on the absolute accuracy of out-painted
depth. Overall, this data curation engine substantially boosts the quantity and diversity of panoramic
data, and significantly strengthens the zero-shot performance of DA2, as shown in Fig. 2 and Tab. 2.

Panoramas typically use equirectangular projection (ERP)3 to represent the 360◦×180◦ visual space.
However, a 3D spherical space cannot be “losslessly” projected onto a 2D plane. During the sphere-
to-plane projection, distortions and stretching are inevitable, particularly near the poles. This spheri-
cal distortion is analogous to the challenge in world map projection, where you can never accurately
express both the areas and shapes of each land. To mitigate the impact of spherical distortion, in-
spired by the positional embeddings in Vision Transformers (ViTs), we propose SphereViT—the
main backbone of DA2. Specifically, from the layout of ERP, we first compute the spherical angles
(azimuth and polar) of each pixel in the camera-centric spherical coordinates. After that, we expand
this two-channel angle field into the image feature dimension using sine-cosine basis embedding,
forming the Spherical Embedding. Since all panoramas have the same full FoV, this spherical em-
bedding can be fixed and reusable. Therefore, to inject spherical awareness, it’s only necessary to let
the image feature “attend” to the spherical embedding, but not vice versa—the spherical embedding
doesn’t need to be further refined. Consequently, rather than adding positional embeddings onto the
image features before self-attention, as in standard ViTs (Vaswani et al., 2017; Dosovitskiy et al.,
2020), SphereViT uses cross-attention: image features are regarded as queries and the spherical em-

1Please see Supp’s Sec. D for discussions on: metric, scale-invariant (biased), and affine-invariant (relative).
2We acknowledge the distinction between distance (d =

√
x2 + y2 + z2) and depth (d = z). We focus on

scale-invariant distance prediction. Please allow us to use “depth” occasionally for readability and fluency.
3ERP can represent a full vertical FoV (i.e., 180◦). If smaller than 180◦, cylindrical projection can be used,

such as the panoramic camera mode in mobile phones. Both can present a full horizontal FoV (i.e., 360◦).
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Figure 2: Scaling-law curves of model performance vs data size. Native, high-quality panoramic
data is scarce, constraining the zero-shot generalization of panoramic depth estimators. With our
data curation engine, DA2 achieves steadily and clearly higher performance as more perspective
depth data are converted to panoramic form. Detailed numerical results are provided in Tab. 2.

beddings as keys and values. This design lets the image feature explicitly attend to the panorama’s
spherical geometry, yielding distortion-aware representations and improved performance.

To validate DA2, we conduct a comprehensive benchmark on scale-invariant distance combining
multiple well-recognized evaluation datasets. However, due to the scarcity of panoramic data, ex-
isting zero-shot approaches in panoramic depth estimation are limited, whereas in perspective, there
exist many powerful zero-shot methods. Therefore, to ensure a more fair and comprehensive com-
parison, following the panoramic depth estimation pipeline proposed by Wang et al. (2025c;d), we
also benchmark DA2 against prior zero-shot perspective depth estimators (Hu et al., 2024; Yin et al.,
2023; Piccinelli et al., 2024; 2025b; Wang et al., 2025a;c;d; Bhat et al., 2023; Yang et al., 2024a;b;
He et al., 2024b), The results in Tab. 1 clearly demonstrate DA2’s SoTA performance, with an aver-
age 38% improvement on AbsRel over the strongest zero-shot baseline. Notably, it even surpasses
prior in-domain methods, further underscoring its superior generalization ability. Beyond that, DA2

seamlessly supports various applications, such as panoramic multi-view reconstruction, home deco-
ration, and robotics simulation (please see our Supp’s Sec. A). Our key contributions are:

• Panoramic data curation engine. We introduce a data curation engine that generates high-
quality panoramic depth data from perspective data, greatly scaling up the panoramic depth
training data and substantially improving the zero-shot generalization ability of DA2.

• SphereViT. We propose SphereViT—the primary backbone of DA2. By directly leverag-
ing the spherical coordinates of panoramas, SphereViT effectively mitigates the impact of
spherical distortions and enhances the spherical geometry awareness of image features.

• Comprehensive benchmark. Both zero-shot / in-domain, panoramic / perspective meth-
ods are compared to build a comprehensive benchmark for panoramic depth estimation.

• SoTA performance. Experimental results clearly demonstrate DA2’s SoTA performance.
DA2 even beats prior in-domain methods. It also enables many downstream applications.

2 RELATED WORKS

2.1 PERSPECTIVE DEPTH ESTIMATION

Perspective depth estimation is being advanced very rapidly. Metric and scale-invariant depth mod-
els, driven by large-scale training data, have achieved strong results, like UniDepth (Piccinelli et al.,
2024; 2025b), Metric3D (Hu et al., 2024; Yin et al., 2023), DepthPro (Bochkovskiy et al., 2025),
and MoGe (Wang et al., 2025c;d). Relative depth models also benefit greatly from scaling up the
training data, like DepthAnything (Yang et al., 2024a;b). Another line of work fine-tunes massively
pre-trained generative models, e.g., Stable Diffusion (Rombach et al., 2022; Ho et al., 2020; He
et al., 2024a; Li et al., 2024b; Liang et al., 2024), FLUX (Black Forest Labs, 2024; Yang et al.,
2025b), with limited high-quality data, also yielding impressive results (Ke et al., 2024; He et al.,
2024b; Wang et al., 2025b; Li et al., 2025a; 2024a). Despite these remarkable advances, perspective
methods remain constrained by the limited FoV and cannot estimate depth in all directions simulta-
neously. In contrast, DA2 targets full FoV depth estimation with strong zero-shot generalization.
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Figure 3: Panoramic data curation engine. This module converts large-scale, high-quality perspec-
tive RGB–depth pairs into full panoramas through P2E projection and panoramic out-painting using
FLUX-I2P. It dramatically scales up the panoramic depth training data, forming a solid training data
foundation for DA2. The highlighted area on the spheres indicate the FoV coverage.

2.2 PANORAMIC DEPTH ESTIMATION

In-domain. Due to the scarcity of panoramic data, most existing methods are constrained to in-
domain settings. Network designs have evolved from CNNs (Zioulis et al., 2018; Zhuang et al.,
2022)) to ViTs (Shen et al., 2022; Yun et al., 2023). Pipeline designs are mainly aimed to miti-
gate the spherical distortions inherent in panoramas. Many approaches fuse features from both the
ERP (1 panorama) and cubemap (6 perspectives) projections (Wang et al., 2020; Jiang et al., 2021;
Wang et al., 2022; Li et al., 2022; Ai et al., 2023; Wang & Liu, 2024). For alternative solutions,
SliceNet (Pintore et al., 2021) and HoHoNet (Sun et al., 2021) use RNNs or LSTMs along longi-
tudes. SphereDepth (Yan et al., 2022), Elite360D (Ai & Wang, 2024), HUSH (Lee et al., 2025) in-
troduce spherical icosahedral meshes and spherical harmonics. While effective, these strategies still
require additional modules, making them less streamlined and efficient. DA2 introduces SphereViT
to handle the spherical distortions in an end-to-end manner, without extra modules.

Zero-shot. With the rise of zero-shot perspective depth estimators, there has been a trend toward
developing zero-shot depth estimators for panoramas. 360MonoDepth (Rey et al., 2022) blends tan-
gent perspective depths predicted by MiDaS (Ranftl et al., 2020) on an icosahedral mesh, but suffers
from multi-view inconsistencies. PanDA (Cao et al., 2025) leverages Möbius transformation-based
data augmentation for self-supervision. UniK3D Piccinelli et al. (2025a) separately predicts camera
rays and distance maps, can generalize on various cameras. But their performance remains sub-
optimal, due to limited panoramic data: ∼20K labeled and ∼92K unlabeled in PanDA, ∼29K in
UniK3D. DepthAnyCamera (Guo et al., 2025) projects perspective images with various horizon-
tal FoVs (20◦−124◦, ≪360◦) into spherical space, can also generalize on various cameras. But
its performance still remains constrained by the incomplete FoVs. In contrast, DA2 introduces a
panoramic data curation engine, significantly boosting the quantity and diversity of panoramic data
from available perspective data, yielding a clearly enhanced zero-shot generalization performance.

3 METHODOLOGY

This section presents the methodology of DA2 in detail, covering the panoramic data curation engine
(Sec. 3.1) and SphereViT with its training loss functions (Sec. 3.2).

3.1 PANORAMIC DATA CURATION ENGINE

“The quality of your data determines the ceiling of your ambitions.” (Surge AI, 2020)

Due to the scarcity of high-quality panoramic data, existing panoramic depth estimators are often
trained and evaluated within specific domains, greatly restricting their zero-shot generalization abil-
ity and real-world applicability. Thus, the very first goal of this work is to scale up the panoramic
data and build a strong data foundation for DA2. Motivated by this, we propose a perspective-to-
panoramic data curation engine that generates high-quality panoramic data from perspective data.

As illustrated in Fig. 3, the inputs of the panoramic data curation engine are a perspective image sized
(Wper, Hper) and its FoVs, i.e., XFoV and YFoV. XFoV represents the coverage of this perspective
image in the azimuth field |ϕl−ϕr| and YFoV denotes the coverage in the polar angle field |θu−θd|.
At first, P2E projection will be performed to map the perspective image onto the spherical space.
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Figure 4: The architecture of SphereViT and training losses. By leveraging the spherical embedding
Esphere, which is explicitly derived from the spherical coordinates of panoramas, SphereViT produces
distortion-aware image features, yielding more accurate geometrical estimation for panoramas. The
training supervision combines a distance loss Ldis for globally accurate distance values and a normal
loss Lnor for locally smooth and sharp surfaces. The effect of Lnor is ablated in Fig. 6 (b) and Tab. 3.

Specifically, we start by obtaining the focal lengths from both FoVs:

fx =
Wper

2× tan
(
FoVx

2

) , fy =
Hper

2× tan
(

FoVy

2

) . (1)

Then, the 3D vector d and its unit vector d̂ from the perspective camera to each 2D pixel (x, y) of
the perspective image (x ∈ [0,Wper − 1], y ∈ [0, Hper − 1]) are given by:

d = [
(x− Wper−1

2 )

fx
,
(y − Hper−1

2 )

fy
, 1], d̂ =

d

|d|
. (2)

Then, in the spherical space, the azimuth ϕ (longitude) and polar θ (colatitude) angles of d̂ are:

ϕ = atan2(d̂x, d̂z) + ϕc, θ = arccos(d̂y) + θc, (3)
where (ϕc, θc) denote the spherical coordinates of the perspective image’s optical center, used as
offsets to obtain the absolute longitude and colatitude of each pixel. After that, the mapped pixel
position (u, v) on the ERP image (i.e., panorama) sized (Wpano, Hpano) is given by:

u =
ϕ

2π
Wpano, v =

θ

π
Hpano, (4)

where ϕ ∈ [0, 2π), θ ∈ [0, π]. After P2E projection, due to the limited FoV of perspective images,
only a small portion of the sphere can be covered, as highlighted in Fig. 3’s left sphere. This
incompleteness leads to suboptimal performance: 1) the model lacks global context since it never
observes the full views of panoramic images, particularly near the poles; and 2) spherical distortions
vary significantly between the equator and poles, with severe stretching occurring at high latitudes.

Thus, following (Tencent, 2025), the second step of our data curation engine adopts a LoRA (Hu
et al., 2022) fine-tuned FLUX model named FLUX-I2P for panoramic out-painting, generating
“full” panoramas from the “partial” panoramas. Earlier panoramic out-painting methods (Gao et al.,
2024; Feng et al., 2023) often exhibited spatial inconsistencies, especially near the poles and the
left–right seam. To address this, FLUX-I2P concatenates image features with the spherical coordi-
nates (azimuth ϕ and polar θ) along the channel dimension before feeding them into the Diffusion
Transformer (DiT) (Peebles & Xie, 2022), to improve the spatial coherence. For the GT depth asso-
ciated with the perspective image, we apply only the P2E projection without panoramic out-painting,
because the absolute accuracy of out-painted depth is hard to guarantee. As ablated in Tab. 3, al-
though the panoramic out-painting on the P2E projected GT depth is not performed, FLUX-I2P’s
panoramic out-painting on the RGB images clearly improves the panoramic depth estimation per-
formance by a large margin, demonstrating its significance in our panoramic data curation engine.
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3.2 SPHEREVIT & TRAINING LOSSES

This data curation engine creates ∼543K panoramic samples, scales the total from ∼63K to ∼607K
(∼10 times), significantly addressing the data scarcity issue that causes poor generalization. Here
we focus on DA2’s model structure and training, to effectively learn from the greatly scaled-up data.

Recently, ViT-based depth models have achieved great success (Wang et al., 2025c;d; Yang et al.,
2024a;b; Piccinelli et al., 2025a), where positional embeddings (PE) are crucial for encoding spatial
information. For perspectives, PE is typically derived from the 2D (x, y) pixel coordinates. How-
ever, for panoramas, pixel coordinates (u, v) correspond to spherical coordinates (longitude ϕ and
latitude θ). The spherical nature introduces non-uniformity: high-latitude regions (near the poles)
are stretched, while low-latitude regions (near the equator) are compressed. Conventional 2D PE
cannot account for this spherical distortion, limiting the model’s spherical spatial understanding. To
address this, many approaches fuse features from both the ERP (1 panorama) and cubemap (6 per-
spectives) projections or employ auxiliary modules, introducing inefficiencies and complexity. In
contrast, DA2 aims to handle the distortions more simply and efficiently, without extra modules.

To this end, DA2 proposes SphereViT, as illustrated in Fig. 4. SphereViT leverages the spherical
coordinates of panoramas to efficiently and explicitly inject spherical-awareness into the ViT image
features, yielding distortion-aware representations and improved performance. Specifically, we first
compute the azimuth and polar angles (ϕ, θ) of each pixel (u, v) in an ERP image sized (W,H):

ϕ = 2π × u

W
, θ = π × v

H
. (5)

Then, given the image feature Z ∈ R(H′×W ′)×D, where W ′ = W
P , H ′ = H

P and P is patch size, we
resize and flatten this two-channel angle field A ∈ RH×W×2 (Eq. 5) into A′ ∈ R(H′×W ′)×2. Moti-
vated by the PE mechanism of ViT, sine-cosine embedding is utilized to expand A′’s channel from
2 to the image feature dimension D. Concretely, we first define a series of coefficients {2dn}D′

n=1,
where D′ = D

4 , dn = (n−1) log2(H
′)

D′ . Then, for each two-channel unit of A′: A′
i,j = [ϕi, θj ] ∈ R1×2,

where i ∈ [0,W ′ − 1], j ∈ [0, H ′ − 1], we transpose and multiple it with the coefficients:[
ϕi

θj

]
×
[
2d1 2d2 · · · 2dD′

]
=

[
2d1ϕi 2d2ϕi · · · 2dD′ϕi

2d1θj 2d2θj · · · 2dD′ θj

]
. (6)

Eq. 6’s result is shaped 2×D′. We then apply the sine-cosine embedding on each unit of this matrix:[
[sin(2d1ϕi), cos(2

d1ϕi)]
⊤ [sin(2d2ϕi), cos(2

d2ϕi)]
⊤ · · · [sin(2dD′ϕi), cos(2

dD′ϕi)]
⊤

[sin(2d1θj), cos(2
d1θj)]

⊤ [sin(2d2θj), cos(2
d2θj)]

⊤ · · · [sin(2dD′ θj), cos(2
dD′ θj)]

⊤

]
. (7)

Eq. 7 has a shape of 2 ×D′ × 2. Now, the flattened transformation of Eq. 7—with a dimension of
2×D′ × 2 = D—is the unit (i, j) of the Spherical Embedding Esphere ∈ R(H′×W ′)×D.

As discussed in Sec. 1, all panoramas share the same 360◦×180◦ FoV, so the spherical embedding is
fixed, reusable, and doesn’t need to be further refined. Thus, to inject spherical awareness, it’s only
necessary to let image features Z “attend” to the embedding Esphere, but not vice versa. Accordingly,
SphereViT replaces the usual self-attention (after addition: Z +Esphere) with cross-attention, where
image features Z serve as queries and the spherical embeddings Esphere act as keys and values:

CrossAttn (Z,Esphere ) = SoftMax

(
ZWQ (Esphere WK)

⊤
√
Dk

)
(Esphere WV ) , (8)

where WQ,WK ,WV ∈ RD×Dk are learnable projection matrixs, and Z,Esphere ∈ R(H′×W ′)×D.
This cross-attention with spherical embedding Esphere allows the image features Z to “learn” the
underlying spherical structures of the panoramas, producing distortion-aware representations and
leading to clearly enhanced geometrical fidelity as demonstrated in Fig. 6 (a) and Tab. 3.

Training Losses. DA2’s SphereViT is trained end-to-end to estimate dense, scale-invariant distance
D̂ ∈ RH×W from a panoramic RGB input I ∈ RH×W×3. The supervision combines two terms:
a distance loss Ldis that enforces globally accurate distance values, and a normal loss Lnor that
promotes locally smooth, sharp geometrical surfaces, especially in regions where distance values
are similar but surface normals vary significantly. Concretely, let D̂ and D⋆ be the predicted and GT
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Table 1: Quantitative comparison. For a fair and comprehensive benchmark, we include both zero-
shot / in-domain, panoramic / perspective approaches. The best and second best performances
are highlighted (in zero-shot setting). In all settings (both zero-shot and in-domain), the best and
second best performances are bolded and underlined. DA2 outperforms all others methods no matter
in zero-shot or all settings, particularly showing large gains under the zero-shot setting. Median
alignment (scale-invariant) is adopted by default. △: Affine-invariant alignment (scale and shift-
invariant), for prior relative depth estimators: DepthAnything v1v2 (Yang et al., 2024a;b), Lotus (He
et al., 2024b), and PanDA (Cao et al., 2025). We also report PanDA’s results in median alignment
for fairness. ⋆: Implemented by ourselves (code will be released). The unit is percentage (%).

Categories Method Stanford2D3D Matterport3D PanoSUNCG Rank↓ Rank↓

AbsRel↓RMSE↓ δ1 ↑ δ2 ↑ AbsRel↓RMSE↓ δ1 ↑ δ2 ↑ AbsRel↓RMSE↓ δ1 ↑ δ2 ↑ Zero-shot All

In-domain

OmniDepth 19.96 61.52 68.77 88.91 29.01 76.43 68.30 87.94 11.43 37.10 87.05 93.65 – 26.33
FCRN 18.37 57.74 72.30 92.07 24.09 67.04 77.03 91.74 9.79 39.73 92.23 96.59 – 24.00
BiFuse 12.09 41.42 86.60 95.80 20.48 62.59 84.52 93.19 5.92 25.96 95.90 98.23 – 16.83

EGFormer 15.28 49.74 81.85 93.38 14.73 60.25 81.58 93.90 – – – – – 15.50
SliceNet 12.49 43.70 83.77 94.14 17.64 61.33 87.16 94.83 – – – – – 14.17

SphereDepth 11.58 45.12 86.66 96.42 12.05 59.22 86.20 95.19 – – – – – 12.42
BiFuse++ 11.17 37.20 87.83 96.49 14.24 51.90 87.90 95.17 5.24 24.77 96.30 98.35 – 12.17
UniFuse 11.14 36.91 87.11 96.64 10.63 49.41 88.97 96.23 5.28 27.04 95.91 98.25 – 11.25
HoHoNet 10.14 38.34 90.54 96.93 14.88 51.38 87.86 95.19 – – – – – 10.33
Elite360D 11.82 37.56 88.72 96.84 11.15 48.75 88.15 96.46 – – – – – 10.00

PanoFormer 11.31 35.57 88.08 96.23 9.04 44.70 88.16 96.61 5.34 18.90 94.87 98.83 – 9.50
HRDFuse 9.35 31.06 91.40 97.98 9.67 44.33 91.62 96.69 6.90 27.44 92.15 97.42 – 9.50

SphereFusion 8.99 31.94 92.57 97.55 11.45 48.85 87.01 96.13 – – – – – 7.92
ACDNet 9.84 34.10 88.72 97.04 10.10 46.29 90.00 96.78 – – – – – 7.08

DepthAnywhere 11.80 35.10 91.00 97.10 8.50 – 91.70 97.60 – – – – – 5.33
OmniFusion 9.50 34.74 89.88 97.69 9.00 42.61 91.89 97.97 – – – – – 5.00

HUSH 7.82 33.32 93.84 98.49 8.38 41.64 92.87 96.98 – – – – – 3.67

Zero-shot
((fusion)

Lotus-D⋆△ 45.88 48.86 37.67 68.39 32.39 85.86 48.15 78.23 37.96 77.02 46.08 77.41 17.00 30.33
Lotus-G⋆△ 45.08 47.90 38.38 69.18 31.82 84.51 49.11 78.92 38.02 76.82 46.16 77.51 16.17 29.50

DepthAnything⋆△ 37.21 43.41 47.08 76.93 24.46 66.12 60.54 88.32 24.58 52.22 64.86 90.39 14.58 27.42
DepthAnythingv2⋆△ 36.79 43.39 47.66 76.96 25.85 70.67 58.42 86.19 23.90 50.74 66.86 90.89 14.25 27.25

ZoeDepth⋆ 17.60 33.74 74.26 92.86 18.43 53.46 72.18 93.12 21.16 44.81 69.34 94.45 11.75 22.58
360MonoDepth 16.50 28.23 74.56 92.98 20.83 79.09 65.58 88.95 11.43 28.29 90.75 98.12 10.83 21.67

VGGT⋆ 18.70 33.50 74.08 83.90 10.78 38.80 88.70 97.72 8.43 25.67 94.04 98.19 8.42 15.08
Metric3D⋆ 12.93 20.80 84.77 96.52 14.11 45.11 83.09 96.59 11.42 26.95 90.45 97.33 7.67 15.17
UniDepth⋆ 15.06 20.48 76.99 90.34 11.12 36.20 88.66 97.94 10.40 27.29 92.59 98.00 7.50 13.92

MoGe 15.81 25.76 79.02 83.32 10.04 35.91 90.80 98.45 8.60 25.80 93.85 98.31 6.33 12.08
UniDepthv2⋆ 13.08 20.46 82.12 89.21 10.86 37.68 88.76 97.86 9.74 25.94 93.06 98.30 6.25 12.17
Metric3Dv2⋆ 11.59 21.78 86.07 97.36 17.78 62.55 72.35 93.22 7.30 24.54 94.25 98.25 6.08 14.08

MoGev2 14.69 24.24 79.98 84.39 10.34 36.91 89.48 98.24 8.26 24.67 94.15 98.52 5.58 11.25

Zero-shot
(end2end)

PanDA 48.44 53.06 33.92 51.33 37.10 101.5 42.51 67.29 34.73 79.69 44.49 71.45 17.50 30.83
DepthAnyCamera 15.26 22.80 75.47 92.90 15.60 61.85 77.27 95.62 12.78 27.88 89.67 97.85 9.75 19.42

PanDA△ 16.48 23.64 73.26 85.42 8.88 33.25 92.09 98.26 6.71 21.85 95.42 98.25 5.33 10.33
UniK3D 11.31 19.72 88.94 95.33 9.66 32.66 93.00 98.58 11.46 25.38 90.18 98.02 4.58 8.75

DA2 (Ours) 7.23 14.00 95.45 98.38 6.67 28.82 95.61 98.60 5.96 19.07 96.12 98.55 1.00 1.67

distances. Then the surface normals can be obtained with a distance-to-normal operator D2N, giving
N̂ = D2N(D̂) and N⋆ = D2N(D⋆) when GT normals are not directly available. Since we focuses
on scale-invariant distance, D̂ is median-aligned before loss computing: D̂med = D̂ × Median(D⋆)

Median(D̂)
.

While training the SphereViT, we minimize the per-pixel L1 difference for both Ldis and Lnor:

Ldis =
1

|Ω|
∑
p∈Ω

∣∣ D̂med
p −D⋆

p

∣∣, Lnor =
1

|Ω|
∑
p∈Ω

∣∣ N̂p −N⋆
p

∣∣, (9)

where Ω is the set of valid pixels. For Lnor, we prefer the L1 norm over the commonly-used angular
discrepancy 1−⟨N̂p, Np⟩ as the latter may introduce gradient collapse and destabilize training. The
total loss is a weighted sum: L = λdLdis + λnLnor, where λd and λn are scalar weights.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Training Datasets. DA2 is trained using 7 high-quality datasets. 6 perspective: Hypersim (Roberts
et al., 2021), Virtual-KITTI 2 (Cabon et al., 2020), MVS-Synth Huang et al. (2018), Unreal-
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Table 2: Ablation study on training data scaling. The results show clear, steady performance gains as
the size of training data grows. Pano indicates a perspective dataset converted into panoramic through
our data curation engine. The average results across multiple datasets are reported (also in Tab. 3).
Please see Supp’s Sec. B for more discussions about the date curation engine and the curated data.

S3D HPSPano VKPano MVSPano US4KPano 3DKBPano DRPano Data Size AbsRel↓ RMSE↓ δ1 ↑ δ2 ↑
✓ ✗ ✗ ✗ ✗ ✗ ✗ 63,097 8.07 25.13 92.91 97.29
✓ ✓ ✗ ✗ ✗ ✗ ✗ 96,677 7.10 21.94 94.69 98.09
✓ ✓ ✓ ✗ ✗ ✗ ✗ 136,326 6.84 21.50 95.09 98.25
✓ ✓ ✓ ✓ ✗ ✗ ✗ 148,326 6.78 21.40 95.25 98.31
✓ ✓ ✓ ✓ ✓ ✗ ✗ 164,726 6.76 21.42 95.35 98.31
✓ ✓ ✓ ✓ ✓ ✓ ✗ 316,722 6.66 21.00 95.55 98.41

✓ ✓ ✓ ✓ ✓ ✓ ✓ 606,522 6.62 20.63 95.73 98.51

Stereo4K (Tosi et al., 2021), 3D-Ken-Burns (Niklaus et al., 2019), Dynamic Replica (Karaev et al.,
2023), totaling 543,425 samples; 1 panoramic: Structured3D (Zheng et al., 2020) (63,097 samples).

Evaluation Datasets & Metrics. For a fair and reproducible comparison, DA2 is evaluated on three
widely-used, well-recognized benchmarks in panoramic depth estimation: Stanford2D3D-S (Ar-
meni et al., 2017) (all splits), Matterport3D (Chang et al., 2017) (test split), and PanoSUNCG (Wang
et al., 2018) (test split), using 2 error metrics (AbsRel, RMSE), and 2 accuracy metrics (δ1, δ2).
Please see the implementation details (Sec. E) and metric formulations (Sec. C) in our Supp.
4.2 QUANTITATIVE & QUALITATIVE COMPARISONS

DA2 (~0.3s) UniK3D (~0.3s) MoGev2 (~28s)

Figure 5: Qualitative comparisons. Compared with UniK3D
and MoGev2, DA2 delivers more accurate geometric predic-
tions and, as an end-to-end approach, achieves significantly
higher inference efficiency than fusion-based methods.

Tab. 1 presents a comprehensive
comparison of DA2 with previous
SoTA approaches. Following (Wang
et al., 2025c;d), we also include prior
perspective methods for a more thor-
ough comparison. As demonstrated
in Tab. 1, DA2 consistently outper-
forms all other methods across vari-
ous settings. Particularly in the zero-
shot setting, DA2 shows significant
gains over the second-best method
by an average of 38% in AbsRel
and 22% in RMSE, achieving a re-
markable average δ1 of 95.73% and
δ2 of 98.51%. Notably, even as a
zero-shot model, DA2 surpasses ear-
lier in-domain methods as well, fur-
ther underscoring its superior zero-
shot generalization ability.

In addition, for better access the DA2’s performance, we also conduct qualitative comparisons
with UniK3D (Piccinelli et al., 2025a)—the strongest prior zero-shot, end-to-end method, and Mo-
Gev2 (Wang et al., 2025d)—the strongest prior zero-shot, fusion-based method, as highlighted in
Fig. 5. Thanks to our data curation engine, DA2 is trained with about 21× more panoramic data than
UniK3D, exhibiting clearly more accurate geometrical predictions. DA2 continuously yields better
results over MoGev2, as its panoramic performance is restricted by the multi-view inconsistencies
during fusion, e.g., irregular walls, fragmented buildings, etc. We also report the inference times: as
an end-to-end method, DA2 achieves significantly higher efficiency than fusion-based approaches.

4.3 ABLATION STUDIES

Training Data. As reported in Tab. 2, DA2’s performance steadily improves as more perspective
depth data converted into panoramic, thanks to our data curation engine. Fig. 2 further shows rapid
gains once the curated perspective data is introduced, with performance gradually converging as the
data scales. Even near convergence, further improvements are still anticipated with additional data.
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Table 3: Ablation studies on: 1) the panoramic out-painting in the data curation engine, 2) spherical
embedding Esphere in the SphereViT, and 3) the auxiliary normal loss Lnor. The results below demon-
strate that each design plays a vital role in achieving the final remarkable performance of DA2.

Pano. Out-painting Spherical Emb. Esphere Normal Loss Lnor Data Size AbsRel↓ RMSE↓ δ1 ↑ δ2 ↑
✗ ✓ ✓ 606,522 7.59 23.80 94.12 97.86
✓ ✗ ✓ 606,522 6.84 20.87 95.26 98.43
✓ ✓ ✗ 606,522 6.99 21.53 95.25 98.37

✓ ✓ ✓ 606,522 6.62 20.63 95.73 98.51

𝒘/ Normal 
Loss ℒnor

𝒘/𝒐 Normal 
Loss ℒnor

𝒘/ Spherical 
Emb. 𝐸sphere

𝒘/𝒐 Spherical 
Emb. 𝐸sphere

Curved Curved
(a) (b)

Figure 6: Ablation studies of DA2. (a) Removing the spherical embedding Esphere causes curved,
distorted geometry. (b) Omitting the normal loss Lnor yields rougher surfaces and more artifacts.
Panoramic Out-painting. It is a crucial step in the panoramic data curation engine, generating full
RGB panoramas from P2E-projected perspective images (Fig. 3). Comparing Tab. 2’s 1st row with
Tab. 3’s 1st row, DA2’s performance can be improved only modestly via scaling up the perspective
w/o panoramic out-painting, yielding a 0.48 gain in AbsRel. In contrast, incorporating (w/) out-
painting yields a much larger boost than “w/o out-painting” (∼3 times), with a 1.45 gain in AbsRel
(Tab. 2’s 1st row vs. Tab. 3’s last row), clearly showing the importance of panoramic out-painting.

Spherical Embedding. We here ablate the impact of spherical embedding Esphere in the SphereViT.
As shown in Tab. 3 (2nd vs. last row), including Esphere noticeably boosts DA2’s performance. Fig. 6
(a) further illustrates that incorporating the spherical embedding produces more accurate geometric
understandings on panoramas, while its absence often leads to suboptimal performance (e.g., curved
walls), highlighting its effectiveness in mitigating the spherical distortions.

Training Losses. We further ablate the auxiliary normal loss Lnor used for training the SphereViT.
As shown in Tab. 3 (3rd vs. last row), adding Lnor boosts DA2’s performance clearly. Also, as
highlighted in Fig. 6 (b), normal supervision yields flatter, smoother, and more coherent geome-
try, reducing the artifacts that typically appear in ambiguous regions (e.g., corners, edges, and the
upper or lower poles), where distance values may be similar but surface normals differ substantially.

(b)

(a)

Figure 7: DA2’s limitations. (a) The white lamp’s
predicted distance is mistakenly aligned with the
desk surface. (b) Visible seams appear along the
predictions at lower left–right boundaries.

5 LIMITATION & CONCLUSION

Limitation. Despite the strong performance en-
abled by the large-scale training data thanks
to our panoramic data curation engine and
distortion-aware SphereViT, DA2 still faces
several constraints. As the training resolution
(1024×512) is lower than higher-definition for-
mats such as 2K or 4K, and the curated per-
spective data provide only partially available
GT depth in the spherical space, DA2 may oc-
casionally miss fine details (Fig. 7 (a)) and
produce visible seams along the panorama’s
left–right boundaries (which should ideally be
seamlessly aligned), as illustrated in Fig. 7 (b).
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Conclusion. We introduce DA2, an end-to-end, zero-shot generalizable, panoramic distance (scale-
invariant) estimator that unites a panoramic data curation engine with the distortion-aware Sphere-
ViT. Trained on over 600K samples (∼543K curated from perspective and ∼63K native panora-
mas), DA2 delivers SoTA zero-shot performance, outperforming prior methods (both zero-shot and
in-domain) by a clear margin while remaining efficient and fully end-to-end. This work shows that
scaling up panoramic data and explicitly modeling the spherical geometry enables high-quality and
robust 360◦×180◦ geometrical estimation, paving the way for high-fidelity 3D scene applications,
e.g., immersive 3D scene creation, AR/VR, robotics simulation, physical simulation, etc.
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SUPPLEMENTARY MATERIALS OF
DA2: DEPTH ANYTHING IN ANY DIRECTION

A APPLICATIONS OF DA2

Leveraging its remarkable capability in zero-shot generalizable panoramic depth estimation, DA2

effectively enables a wide range of 3D reconstruction-related applications.

Figure 8: Pano3R: Panoramic Multi-view Reconstruction. Given panoramic images of different
rooms from a house / apartment, DA2 enables the reconstruction of a globally aligned 3D point
cloud, ensuring the spatial coherence across multiple panoramic views of different rooms.

A.1 PANO3R: PANORAMIC MULTI-VIEW RECONSTRUCTION

A house / apartment typically consists of multiple distinct rooms, which may exhibit substantial
geometric variations. Thanks to the strong zero-shot generalization and high geometric consistency
in panoramic depth estimation, DA2 is able to reconstruct a holistic 3D point cloud representation of
the indoor layout, leveraging multiple panoramic images captured from different rooms. As shown
in Fig. 8, the rooms can be consistently aligned via simple translation, without requiring any scaling
or rotation operations. This characteristic highlights the robustness and superior geometric consis-
tency of DA2’s depth estimation, enabling seamless alignment of shared structures such as walls and
doors, facilitating applications such as VR-based indoor apartment tours and layout visualization.

A.2 LAYERED HOME RENOVATION

As illustrated in Fig. 9 (a), given indoor panoramas with three distinct complexity levels—“empty”,
“simple”, and “full”—the multiple sets of 3D point clouds reconstructed from DA2’s panoramic dis-
tance maps exhibit high consistency. They can be seamlessly aligned with fine details. As demon-
strated in the zoom-in regions of Fig. 9 (a), the fused point clouds are free of distortions: the text on
the blackboard is sharp, and the wall boundaries are consistently aligned.

A.3 ROBOTICS SIMULATION

Benefiting from DA2’s robust panoramic distance estimation, the reconstructed 3D point cloud can
serve as a reliable 3D simulation environment for robot manipulation. As illustrated in Fig. 9 (b), it
provides a practical 3D platform for simulating and demonstrating robotic tasks.
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(a)

Empty Only Empty + Simple Empty + Simple + Full

(b)

Figure 9: More applications of DA2: (a) Layered Home Renovation. The three input panoramas
correspond to different levels of foreground object complexity, denoted as “empty”, “simple”, and
“full”. The zoom-in views show that the reconstructed 3D point clouds from these panoramas remain
consistently aligned (primarily in backgrounds). (b) Robotics Simulation. The reconstructed 3D
point cloud can serve as a practical 3D platform for evaluating robot manipulation performance.

B PANORAMIC DATA CURATION ENGINE (MORE DETAILS)

As discussed in Sec. 4.1, 6 perspective datasets (Hypersim (Roberts et al., 2021), Virtual-KITTI
2 (Cabon et al., 2020), MVS-Synth Huang et al. (2018), UnrealStereo4K (Tosi et al., 2021), 3D-Ken-
Burns (Niklaus et al., 2019), Dynamic Replica (Karaev et al., 2023)) are transformed into panoramic
via the proposed panoramic data curation engine. The curated datasets are summarized in Tab. 4.
As shown, the sampling probabilities are normalized across datasets primarily considering data size
to ensure a balanced influence during DA2’s training process. Each dataset represents a domain, this
balanced mixture ensures DA2’s performance will not be over influenced by a few strong datasets,
achieving stable scaling behavior across datasets, and optimal cross-domain generalization. To this
end, our data curation engine generates ∼543K high-quality panoramic image–depth pairs from
perspective data, expanding the total dataset to ∼607K samples. This substantially enriches the
quantity and diversity of panoramic data, constructs a solid data foundation for DA2, and in turn
significantly enhances the zero-shot performance of DA2, as demonstrated in Fig. 2 and Tab. 2.

Table 4: Perspective datasets processed by the panoramic data curation engine. For each dataset, the
vertical FoV (YFoV) is derived directly from the horizontal FoV (XFoV) as YFoV = XFoV × H

W ,
where (W,H) denotes the input panorama’s width and height.

Category Dataset Name Abbreviation (Tab. 2) Data Size In-or-outdoor XFoV Sam. Probability

Perspective Hypersim HPS 39,649 In 60◦ 16.59%
Perspective Virtual-KITTI 2 VK 33,580 Out 80◦ 14.05%
Perspective MVS-Synth MVS 12,000 Out 80◦ 5.02%
Perspective UnrealStereo4K US4K 16,400 Various 90◦ 6.86%
Perspective 3D-Ken-Burns 3DKB 151,996 Various 60◦−90◦ 15.91%
Perspective Dynamic Replica DR 289,800 In 85◦ 15.16%

Panoramic Structured3D S3D 63,097 In 360◦ 26.41%
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C EVALUATION METRICS

Concretely, given the predicted panoramic depth D̂ and GT D⋆, median alignment is performed on
the predicted distance D̂ before computing the metrics:

D̂med = D̂ × Median(D⋆)

Median(D̂)
, (10)

following the evaluation protocols in prior works (Lee et al., 2025; Wang & Liu, 2024; Yun et al.,
2023; Yan et al., 2025; 2022; Li et al., 2022; Shen et al., 2022; Zhuang et al., 2022; Wang et al.,
2022; Sun et al., 2021; Pintore et al., 2021; Jiang et al., 2021; Wang et al., 2020; Rey et al., 2022;
Piccinelli et al., 2025a; Cao et al., 2025), After that, the AbsRel and RMSE are given by:

AbsRel =
1

|Ω|
∑
p∈Ω

|D̂med
p −D⋆

p|
D⋆

p

, RMSE =
1

|Ω|

√∑
p∈Ω

(D̂med
p −D⋆

p)
2, (11)

where Ω is the set of valid pixels. δ1 and δ2 denotes the proportion of pixels satisfying
Max(D⋆

p/D̂
med
p , D̂med

p /D⋆
p) < 1.25 and < 1.252 respectively.

D DIFFERENCE AMONG: METRIC & SCALE-INVARIANT (BIASED) &
AFFINE-INVARIANT (RELATIVE)

Metric and Scale-invariant Depth. In depth (or distance) estimation, metric depth Dmetric is the
strictest setting, where the predicted values correspond to absolute physical distances and can be
directly used to reconstruct a “real-scale” point cloud. Scale-invariant (or biased) depth Dbiased is
still strict but slightly more relaxed than metric: predictions include a global bias or shift, but not
in the absolute global scale. Although the depths are not metric, the underlying 3D structure is pre-
served perfectly (Tab. 5), because the global bias or shift is preserved. During training & evaluation,
for scale-invariant depth, median alignment (scale-invariant) is typically adopted to re-scale the un-
derlying 3D structure to real-world size (please see Sec. C). For metric depth, no alignment should
ideally be required, but median alignment is still commonly applied because absolute scales can
be ambiguous (cameras with different focal lengths can capture visually similar pictures but with
substantially different absolute depths) (Hu et al., 2024; Yin et al., 2023; Piccinelli et al., 2025a).

DA2 focuses on panoramic scale-invariant (or biased) distance estimation for two reasons: 1) like
metric distance, scale-invariant distance also preserves the full underlying 3D geometry, and 2)
DA2 targets on the strong zero-shot generalization across diverse domains, enforcing absolute scales
would introduce significant optimization challenges, as indoor and outdoor scenes differ drastically
in scale, making the additional cost outweigh the benefits.

Affine-invariant Depth. Affine-invariant (or relative) depth Drelative is the loosest definition, much
more relaxed than either biased or metric depth, preserving only the “ordering” of depths (which
point is closer or farther). Since neither scale nor shift is preserved, affine-invariant depth Drelative
cannot be used to reconstruct a reasonable 3D point cloud (Tab. 5), but it’s useful for tasks where
only relative geometry matters. Affine-invariant alignment (scale and shift-invariant) is usually
adopted during training & evaluation of affine-invariant depth estimators. Concretely, given the
predicted D̂relative and GT depth D⋆, least squares fitting is performed:

min
scale, shift

∑
p∈Ω

∥∥ scale × (D̂relative,p + shift)−D⋆
p

∥∥2
2
, (12)

where Ω is the set of valid pixels and the aligned predicted depth is: D̂aff = scale×(D̂relative+shift).

The summarized difference is listed in Tab. 5. Note that for the “Illustration with Dmetric” of scale-
invariant and affine-invariant depth, we only list the most widely adopted formats, passing over other
scales for Dbiased and other specific transformations for Drelative like exp(·) and log(·).
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Table 5: Summarized difference on depth maps among metric, scale-invariant (biased), and affine-
invariant (relative). Both metric and scale-invariant depth fully preserve the 3D geometry. Due to
the absence of bias or shift, affine-invariant depth is unable to reconstruct an accurate 3D structure.

Depth Category Metric Depth Scale-invariant Depth Affine-invariant Depth

Illustration with Dmetric Dmetric
Dmetric

max(Dmetric)
Dmetric−min(Dmetric)

max(Dmetric)−min(Dmetric)

5m 1m
(for instance) 1m

(for instance)

3D Point Cloud on:

5m 1m
(for instance) 1m

(for instance)

5m 1m
(for instance) 1m

(for instance)

5m 1m
(for instance) 1m

(for instance)

E IMPLEMENTATION DETAILS

DA2 is implemented in PyTorch (Paszke et al., 2019). In SphereViT, the backbone of “ViT (DINO)”
is initialized from DINOv2-ViT-L (Oquab et al., 2023) with 24 self-attention blocks, following (He
et al., 2024b; Ke et al., 2024), to leverage the pre-trained visual priors. The “ViT w/ Esphere” is
a lightweight ViT contains only 4 cross-attention blocks. Training the SphereViT takes ∼5,000
optimization iterations on 32 NVIDIA H20 GPUs, with a batch size of 768. The distributed
training is implemented with Accelerate (Gugger et al., 2022). We set λdis = 1.0, λnor = 2.0
for balanced loss values. Panoramas and GT depth maps are fed to SphereViT at a resolu-
tion of 1024×512. Please see the sampling probabilities of different data sources in Tab. 4.
In the panoramic data curation engine, the FLUX-I2P is fine-tuned on FLUX.1 [dev] (Black
Forest Labs, 2024), largely following Tencent (2025). The LoRA rank is set to 256 during
the LoRA (Hu et al., 2022) fine-tuning. The positive prompt is: a clean, realistic,
high-quality, high-resolution, panoramic image of a [*] scene, where
[*] is either indoor or outdoor. The negative prompt is: messy, low-quality, blur,
noise, low-resolution, abnormal. The ϕc, θc are randomly selected from ±30◦ and
±15◦, respectively. The panoramic out-painting of 543,425 perspective RGB images from various
datasets is performed on 64 NVIDIA H20 GPUs and over nearly 9 days. The running time reported
in Fig. 5 is tested on a NVIDIA H20 GPU, excluding I/O operations.

F PRIOR SOTA METHODS FOR COMPARISONS

In-domain Baselines. 17 previous in-domain, panoramic depth estimation approaches are selected
for the quantitative comparison in Tab. 1: HUSH (Lee et al., 2025), DepthAnywhere (Wang &
Liu, 2024), Elite360D (Ai & Wang, 2024), EGFormer (Yun et al., 2023), SphereFusion (Yan et al.,
2025), SphereDepth (Yan et al., 2022), OmniFusion (Li et al., 2022), HRDFuse (Ai et al., 2023),
PanoFormer (Shen et al., 2022), ACDNet (Zhuang et al., 2022), BiFuse++ (Wang et al., 2022), Ho-
HoNet (Sun et al., 2021), SliceNet (Pintore et al., 2021), UniFuse (Jiang et al., 2021), BiFuse (Wang
et al., 2020), FCRN (Laina et al., 2016), and OmniDepth (Zioulis et al., 2018).

Zero-shot, fusion-based baselines. 13 zero-shot, fusion-based panoramic depth estimators are se-
lected or implemented. 1 is originally panoramic: 360MonoDepth (Rey et al., 2022). The other
16 are prior SoTA perspective depth estimators: Metric3D & Metric3Dv2 (Yin et al., 2023; Hu
et al., 2024), VGGT (Wang et al., 2025a), MoGe & MoGev2 (Wang et al., 2025c;d), UniDepth
& UniDepthv2 (Piccinelli et al., 2024; 2025b), ZoeDepth (Bhat et al., 2023), DepthAnything &
DepthAnythingv2 (Yang et al., 2024a;b), and Lotus-D & Lotus-G (He et al., 2024b). These methods
are implemented for panoramic scenarios via multi-view splitting and fusion.

Zero-shot, end-to-end baselines. Prior zero-shot, end-to-end methods are rare, and their perfor-
mance are limited by the scarcity of high-quality panoramic depth data. Only 3 methods are com-
pared: UniK3D (Piccinelli et al., 2025a), PanDA (Cao et al., 2025), and DepthAnyCamera (Guo
et al., 2025). As evident in Tab. 1, PanDA predicts affine-invariant (relative) depth, while other
methods including DA2 predict at least the scale-invariant (biased) depth.
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